Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation.

نویسندگان

  • Nam Ho Jeoung
  • Pengfei Wu
  • Mandar A Joshi
  • Jerzy Jaskiewicz
  • Cheryl B Bock
  • Anna A Depaoli-Roach
  • Robert A Harris
چکیده

The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) deficiency attenuates the long-term negative effects of a high-saturated fat diet.

The hypothesis that PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) has potential as a target for the treatment of type 2 diabetes was tested by feeding wild-type and PDHK4 knockout mice a high saturated fat diet that induces hyperglycemia, hyperinsulinaemia, glucose intolerance, hepatic steatosis and obesity. Previous studies have shown that PDHK4 deficiency lowers blood glucose by limiting ...

متن کامل

Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice.

The importance of PDHK (pyruvate dehydrogenase kinase) 2 and 4 in regulation of the PDH complex (pyruvate dehydrogenase complex) was assessed in single- and double-knockout mice. PDHK2 deficiency caused higher PDH complex activity and lower blood glucose levels in the fed, but not the fasted, state. PDHK4 deficiency caused similar effects, but only after fasting. Double deficiency intensified t...

متن کامل

Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: role of thyroid hormone status and lipid supply.

Activation of the pyruvate dehydrogenase (PDH) complex (PDHC) promotes glucose disposal, whereas inactivation conserves glucose. The PDH kinases (PDHKs) regulate glucose oxidation through inhibitory phosphorylation of PDHC. The adult rat heart contains three PDHK isoforms PDHK1, PDHK2 and PDHK4. Using Western-blot analysis, with specific antibodies raised against individual recombinant PDHK1, P...

متن کامل

The Effects of Pyruvate Dehydrogenase Kinase 4 (PDK4) Inhibition on Metabolic Flexibility during Endurance Training in Skeletal Muscles of Streptozotocin-induced Diabetic Rats

Background:Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. Pyruvate Dehydrogenase Kinase 4 (PDK4) is one of the main enzymes that play a critical role in metabolic flexibility. In current study, we examined PDK4 inhibition along with exercise training (ET) on the gene expression of Es...

متن کامل

Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury.

AIMS During reperfusion of the ischaemic myocardium, fatty acid oxidation rates quickly recover, while glucose oxidation rates remain depressed. Direct stimulation of glucose oxidation via activation of pyruvate dehydrogenase (PDH), or secondary to an inhibition of malonyl CoA decarboxylase (MCD), improves cardiac functional recovery during reperfusion following ischaemia. However, the effects ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 397 3  شماره 

صفحات  -

تاریخ انتشار 2006